DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support discovering to enhance thinking abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key distinguishing feature is its support knowing (RL) action, which was used to improve the model's responses beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adapt more successfully to user feedback and goals, eventually boosting both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's equipped to break down complex questions and reason through them in a detailed way. This directed reasoning procedure allows the model to produce more precise, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT abilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually recorded the market's attention as a versatile text-generation design that can be incorporated into various workflows such as representatives, logical reasoning and data interpretation jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, enabling efficient inference by routing questions to the most pertinent expert "clusters." This approach allows the design to focus on various problem domains while maintaining general effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more efficient designs to imitate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as an instructor design.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent damaging content, and evaluate designs against key safety criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, produce a limitation boost request and reach out to your account team.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Establish approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, avoid harmful content, and examine models against crucial security criteria. You can carry out precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general flow involves the following steps: First, the system receives an input for setiathome.berkeley.edu the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the last . However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections show reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and pick the DeepSeek-R1 design.
The model detail page offers vital details about the design's capabilities, pricing structure, and application standards. You can find detailed usage guidelines, including sample API calls and code snippets for combination. The model supports numerous text generation tasks, including content production, code generation, and question answering, using its support learning optimization and CoT thinking abilities.
The page also includes deployment alternatives and licensing details to help you start with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, select Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, enter a number of instances (between 1-100).
6. For example type, select your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role approvals, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, you might wish to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the implementation is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play area to access an interactive user interface where you can experiment with various triggers and change model parameters like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal results. For instance, material for reasoning.
This is an outstanding method to check out the model's reasoning and text generation abilities before incorporating it into your applications. The play area provides immediate feedback, helping you understand how the model reacts to numerous inputs and letting you fine-tune your prompts for ideal results.
You can quickly evaluate the model in the playground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures reasoning specifications, and sends a demand to produce text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses two practical approaches: using the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that best suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design web browser displays available models, with details like the service provider name and design abilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card shows essential details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model
5. Choose the design card to see the model details page.
The model details page includes the following details:
- The model name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical specs.
- Usage guidelines
Before you deploy the design, it's suggested to review the model details and license terms to validate compatibility with your usage case.
6. Choose Deploy to proceed with deployment.
7. For Endpoint name, utilize the immediately generated name or create a custom one.
- For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the variety of circumstances (default: 1). Selecting proper instance types and counts is important for expense and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this design, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
-
Choose Deploy to deploy the design.
The deployment process can take a number of minutes to finish.
When release is total, your endpoint status will alter to InService. At this moment, the model is all set to accept reasoning demands through the endpoint. You can monitor the deployment development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is complete, you can conjure up the design utilizing a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To begin with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Tidy up
To avoid unwanted charges, finish the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the design utilizing Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations. - In the Managed releases area, locate the endpoint you want to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop ingenious solutions using AWS services and sped up compute. Currently, he is concentrated on establishing strategies for fine-tuning and enhancing the inference efficiency of big language designs. In his downtime, Vivek takes pleasure in treking, viewing motion pictures, and attempting various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building options that assist clients accelerate their AI journey and unlock organization worth.