Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
  • Sign in / Register
C
constructionproject-360
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 23
    • Issues 23
    • List
    • Boards
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Albertha Old
  • constructionproject-360
  • Issues
  • #21

Something went wrong while fetching related merge requests.
Closed
Open
Opened 1 month ago by Albertha Old@alberthaold46
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes support finding out to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential identifying function is its support learning (RL) step, which was utilized to improve the model's actions beyond the basic pre-training and tweak process. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately enhancing both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, meaning it's geared up to break down complex questions and factor through them in a detailed manner. This guided reasoning procedure enables the design to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has caught the market's attention as a versatile text-generation model that can be integrated into numerous workflows such as agents, logical thinking and information analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion specifications, making it possible for efficient inference by routing inquiries to the most relevant specialist "clusters." This method permits the model to concentrate on various problem domains while maintaining total performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based upon popular open models like Qwen (1.5 B, wiki.snooze-hotelsoftware.de 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient designs to mimic the behavior and thinking patterns of the larger DeepSeek-R1 model, utilizing it as an instructor model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging content, and examine models against essential security criteria. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation increase, create a limitation boost request and connect to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For instructions, see Set up consents to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, avoid harmful content, and examine models against essential security criteria. You can execute precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For wiki.dulovic.tech the example code to create the guardrail, see the GitHub repo.

The basic flow includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the model's output, another guardrail check is used. If the output passes this final check, it's as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 model.

The model detail page provides necessary details about the model's capabilities, pricing structure, and application standards. You can discover detailed usage instructions, consisting of sample API calls and code snippets for combination. The model supports various text generation tasks, consisting of material development, code generation, systemcheck-wiki.de and concern answering, using its reinforcement finding out optimization and CoT reasoning abilities. The page also includes release alternatives and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, enter a variety of circumstances (in between 1-100). 6. For example type, choose your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role approvals, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production implementations, hb9lc.org you may desire to review these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can explore different prompts and change model parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal outcomes. For instance, material for reasoning.

This is an outstanding way to explore the model's reasoning and text generation abilities before incorporating it into your applications. The playground supplies immediate feedback, assisting you comprehend how the design responds to various inputs and letting you fine-tune your prompts for ideal results.

You can rapidly check the model in the play area through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures reasoning parameters, and sends a demand to generate text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 hassle-free approaches: utilizing the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you select the method that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, wiki.eqoarevival.com choose JumpStart in the navigation pane.

The design internet browser displays available designs, with details like the provider name and model capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows essential details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if suitable), indicating that this design can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to see the design details page.

    The design details page consists of the following details:

    - The design name and service provider details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you release the model, it's suggested to examine the model details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the immediately created name or create a custom one.
  1. For Instance type ¸ select an instance type (default: wiki.eqoarevival.com ml.p5e.48 xlarge).
  2. For Initial instance count, go into the number of instances (default: 1). Selecting suitable instance types and counts is crucial for cost and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we highly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The release process can take numerous minutes to complete.

    When deployment is total, your endpoint status will alter to InService. At this point, the design is all set to accept reasoning requests through the endpoint. You can keep track of the release progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is complete, you can invoke the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, setiathome.berkeley.edu you will require to set up the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations.
  5. In the Managed implementations area, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop ingenious services utilizing AWS services and accelerated compute. Currently, he is concentrated on developing methods for fine-tuning and enhancing the inference performance of large language models. In his spare time, Vivek delights in treking, enjoying films, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing options that assist consumers accelerate their AI journey and unlock service value.

Please solve the reCAPTCHA

We want to be sure it is you, please confirm you are not a robot.

  • You're only seeing other activity in the feed. To add a comment, switch to one of the following options.
Please register or sign in to reply
0 Assignees
Assign to
None
Milestone
None
Assign milestone
None
Time tracking
No estimate or time spent
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Confidentiality
Not confidential
Lock issue
Unlocked
participants
Reference: alberthaold46/constructionproject-360#21