Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
  • Sign in / Register
C
constructionproject-360
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 23
    • Issues 23
    • List
    • Boards
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Albertha Old
  • constructionproject-360
  • Issues
  • #13

Something went wrong while fetching related merge requests.
Closed
Open
Opened 1 month ago by Albertha Old@alberthaold46
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with support knowing (RL) to improve reasoning capability. DeepSeek-R1 attains outcomes on par with OpenAI's o1 design on numerous standards, consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mix of professionals (MoE) design just recently open-sourced by DeepSeek. This base design is fine-tuned utilizing Group Relative Policy Optimization (GRPO), a reasoning-oriented version of RL. The research study team also carried out knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama models and launched a number of versions of each; these designs outperform bigger models, GPT-4, on math and coding standards.

[DeepSeek-R1 is] the primary step towards improving language model reasoning capabilities using pure support knowing (RL). Our goal is to explore the potential of LLMs to develop reasoning capabilities with no supervised information, it-viking.ch concentrating on their self-evolution through a pure RL process...DeepSeek-R1 ... master a wide variety of jobs, including creative writing, basic concern answering, modifying, summarization, and more. Additionally, bytes-the-dust.com DeepSeek-R1 demonstrates outstanding performance on jobs requiring long-context understanding, substantially outshining DeepSeek-V3 on long-context standards.

To develop the design, DeepSeek began with DeepSeek-V3 as a base. They initially tried fine-tuning it just with RL, and without any monitored fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have likewise released. This model exhibits strong reasoning performance, however" powerful thinking habits, it deals with numerous problems. For circumstances, DeepSeek-R1-Zero fights with challenges like poor readability and language mixing."

To address this, the group utilized a brief stage of SFT to avoid the "cold start" issue of RL. They collected a number of thousand examples of chain-of-thought thinking to use in SFT of DeepSeek-V3 before running RL. After the RL procedure converged, they then gathered more SFT data utilizing rejection tasting, garagesale.es leading to a dataset of 800k samples. This dataset was utilized for additional fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek evaluated their model on a variety of thinking, mathematics, and coding standards and compared it to other designs, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outperformed all of them on several of the criteria, including AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, the LMArena announced that DeepSeek-R1 was ranked # 3 total in the arena and wavedream.wiki # 1 in coding and mathematics. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" category.

Django structure co-creator Simon Willison discussed his experiments with one of the DeepSeek distilled Llama designs on his blog:

Each action begins with a ... pseudo-XML tag containing the chain of thought used to assist generate the reaction. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is awful. But the process of getting there was such an intriguing insight into how these brand-new designs work.

Andrew Ng's newsletter The Batch blogged about DeepSeek-R1:

DeepSeek is quickly emerging as a strong home builder of open models. Not only are these designs great entertainers, but their license allows use of their outputs for distillation, trademarketclassifieds.com potentially pushing forward the cutting-edge for language designs (and multimodal designs) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, wiki.dulovic.tech ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering

  • Generative AI
  • Large language designs

    - Related Editorial

    Related Sponsored Content

    - [eBook] Getting Going with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to explore advanced technologies? You can begin constructing smart apps with free Azure app, information, and AI services to decrease upfront expenses. Learn More.

    How could we improve? Take the InfoQ reader study

    Each year, yewiki.org we seek feedback from our readers to assist us improve InfoQ. Would you mind spending 2 minutes to share your feedback in our brief survey? Your feedback will straight assist us continually develop how we support you. The InfoQ Team Take the survey

    Related Content

    The InfoQ Newsletter

    A round-up of recently's content on InfoQ sent every Tuesday. Join a community of over 250,000 senior developers.

Please solve the reCAPTCHA

We want to be sure it is you, please confirm you are not a robot.

  • You're only seeing other activity in the feed. To add a comment, switch to one of the following options.
Please register or sign in to reply
0 Assignees
Assign to
None
Milestone
None
Assign milestone
None
Time tracking
No estimate or time spent
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Confidentiality
Not confidential
Lock issue
Unlocked
participants
Reference: alberthaold46/constructionproject-360#13